
Consistency and Collaboration

Victoria Michalska

Abstract

This paper will be looking at the quantity and quality of exchanges between specific pairings
of peers with different or identical protocols in a given P2P environment using heatmaps; holding
all of the parameters constant with the exception of the kind of protocols present, different
renditions of tit-for-tat’s and their strengths will be explored and then exploited in order to
potentially create a protocol that will intentionally exploit tit-for-tat in order to reveal its lack
of robustness against even simple clients.

1 Introduction

Peer-to-peer (P2P) networks are systems of interacting components with processing and receiving
capacities, connected directly to other components without a centralized entity which controls the
allocation of resources between peers. These networks exist in the banking industry, the electric
power industry, as well as in the world of online file-sharing. This project will be engaging in an
empirical study regarding different strategies for specific peers to utilize when engaging with their
peers, with some theoretical attempts at explaining the results; in the implementation, there will
be a focus on file-sharing systems.

In the world of file-sharing, BitTorrent is the most common protocol. Its approach is primarily
based off the idea of tit-for-tat, which is explained in depth in Section 2 of this paper. It has been
shown not to be robust; an alternative to this protocol is FairTorrent. It is more generous and
forgiving than BitTorrent, meant to utilize the bandwidth that is wasted with BitTorrent when the
protocol actively chooses to choke particular peers due to their behavior in prior rounds.

In this project, a provided simulator written up in Python3 will be utilized in order to implement
different agents. BitTorrent will be implemented in collaboration with FairTorrent in order to
emphasize the respective strengths between the two protocols, and this knowledge is then used in
order to create a similar protocol that may similarly exploit BitTorrent and/or FairTorrent in order
to yield lower average download times for the given agent.

2 Preliminaries

P2P networks are a common method for recourse distribution; theoretically, these sorts of networks
can be expressed as a repeated game, where uploading and downloading have their own respective
utilities. This game resembles the prisoner’s dilemma, pictured in Figure 1, where there are two
options for each player: either the agent can cooperate (C) or dissent (D). In the context of this
paper, assume that the benefit of receiving the file is 3 and the cost of uploading is 1. The
symbols are representative of whatever move the given agent had ended up with as a result of the
automata’s processes regarding the opponent’s moves.

1

Peer B
C D

Peer A C (2,2) (-1,3)
D (3,-1) (0,0)

Figure 1: Payoff Matrix for P2P Game

This payoff matrix is constant between two peers, but the strategies which a given peer can use
to move about this matrix can vary, especially given that upload bandwidth is limited for a given
peer– meaning that the number of peers that a given agent can cooperate with in a given round is
limited.

One approach is tit-for-tat: a strategy which assumes corporation between two players from the
start. In the rounds following, the given player will do what their opponent did in the following
round. It can be represented as a push-down automata via the following diagram:

C D

(, C) (, D)

(, C)

(, D)

Figure 2: DFA for Tit-for-Tat

3 Related Work

This project was originally inspired by a paper by Khan, Waheed, and Saif, under the title,
BitTorrent for the Less Privileged. It explored the quantity of exchanges and unchokes between
different pairs of peers with bandwidths that fell under a uniform distribution. An unchoke, in
this context, defined as the choice to upload to a given peer. Khan’s paper created heatmaps that
visualized the quantity of unchokes between different pairs of peers; given that these peers were of
different bandwidths, those with lower bandwidths were often the last to finish downloading the
appropriate file. This information highlighted the lack of bandwidth-based clustering from which
the lower-bandwidth peers could have benefited by collaborating, and in order to address this, the
authors of the paper created BitMate.[2]

While this project will not be focusing on bandwidths, it will be utilizing a similar visualization
technique to break tit-for-tat’s robustness for strategic players. By looking at the quantity and
kind of exchanges in environments with different sets of agents, certain gaps may be addressed and
then utilized to take advantage of tit-for-tat.

2

4 Background on Protocols

Both, BitTorrent and FairTorrent, which this project will be focusing on, have similar request
processes: in order to prevent the bottlenecks that occur due to a given piece being the most
limited in an environment, the agents will continually request the pieces with the highest rarity,
randomly breaking ties.

4.1 BitTorrent

BitTorrent’s upload process is its most fundamental component: it will only upload to peers who
uploaded to them– in the implementation of it in the simulator, this “past” will be considered to
be only the most recent round. The peers that did not upload to them in the most recent round
will be choked. When a peer is unchoked, then the given agent is uploading to that peer. A
typical BitTorrent has four slots: at most, three of which are occupied by peers that had uploaded
to them in the past, and a fourth, which is considered an optimistic unchoke. This involves the
inclusion of an additional random peer to be unchoked in order to facilitate future uploading of that
peer to other peers. The total upload bandwidth will then be split up evenly between the requests
selected to be satisfied.[1] This is an efficient method against peers that intend to download without
uploading, which is empirically shown in Section 6.2.

4.2 FairTorrent

A major issue with BitTorrent is the wasted bandwidth involved with intentionally choking peers
that hadn’t uploaded to them in the prior round. In order to create a compromise between tit-for-
tat and an efficient use of bandwidth, FairTorrent’s algorithm was created. FairTorrent involves the
maintenance of a deficit list, where all of the blocks uploaded from the peer to a different given peer
are summed and then all of the blocks downloaded from that different given peer to the original
peer are subtracted from that sum. This deficit list is then sorted and used by the agent in order to
select a peer to whom they will upload: the peer with the lowest deficit will be uploaded to first–
if the peer with the lowest deficit has not put in a request, then the peer with the following lowest
deficit will be checked; this process will continue until all of the possible bandwidth is filled, or there
are no more peers left. When an appropriate request is found, the entire requested piece (or the
maximum bytes/blocks possible) will be uploaded to that peer. If there is bandwidth remaining,
then another request will be picked up using the same process described earlier.[4]

4.3 Freerider

Freerider is a protocol that explicitly does not upload to any peers. This lack of contribution on
the part of this sort of protocol results in a detriment to the overall performance of the network in
general by not taking advantage of the equal privileges given to the peers in the P2P network. Its
request protocol functions by going through all of the peers and choosing the maximum possible
number of random pieces that it still needs from a given peer, in hopes that the given peer will
deliver.[3] Tit-for-tat actively addresses this by avoiding uploading to peers that do not reciprocate
downloads, making it depend on the Seeds for downloads, as seen in Section 6.2.

3

4.4 Seed

A Seed is a node in the network that holds the entirety of the original file, only uploading to its
peers depending on its approach. Here, the Seed will be choosing random peers to upload to it,
functioning exclusively altruistically.

5 Tit-for-tat’s Robustness

BitTorrent has been shown not to be particularly robust to strategic peer behavior in the past with
approaches more complex than Freerider (described in Section 4.3), due to the implementation of
clients like BitTyrant, which utilizes higher quantities of computation (involving calculating which
peers have large reciprocation bandwidth, the marginal benefit of an additional peer which will
outweigh the cost of reduced reciprocation probability from other peers, as well as calculating the
upload contribution needed for a particular peer in order to continue its reciprocation) to exploit the
altruism featured in the nuances of BitTorrent’s implementation through the inclusion of optimistic
unchokes and the even splitting of the bandwidth for BitTorrent’s four unchoke slots, as described in
Section 4.1 of this paper.[3] However, this is computationally heavy and not particularly accessible
to less knowledgeable audiences. Therefore this paper will be attempting to prove tit-for-tat’s lack
of robustness against simpler clients.

An alternative to BitTorrent when it comes to the implementation of tit-for-tat as a file-sharing
protocol is FairTorrent, described in detail in Section 4.2. By not actively maintaining chokes but
still preferring to upload to peers who have uploaded to the given agent, FairTorrent does establish
a threat to peers who don’t upload to it; however, because FairTorrent does acknowledge the full
history, rather than just the most recent round, it can be considered more forgiving and should allow
for greater collaboration between the peers in the long-term , given the limited upload bandwidth
of the agents.

6 Methodology and Contributions

This project will be using a P2P file-exchange simulator run in Python3 in order to collect data.
Original implementations of BitTorrent and FairTorrent were written up for the purposes of this
experiment, alongside the creation of a function that creates a heatmap in order to visualize the
sort of exchanges occurring throughout the duration of the experiment. Given the original P2P
simulator, certain adjustments were necessary in order to ensure maximum randomization possible
to prevent the presence of patterns developing in the results where there would be none in practice;
this is specifically regarding the sorting of the peers alphabetically at certain points in the simulator
and this being seen in the results. Afterwards, new functions had to be created in order to facilitate
the presentation of data as heatmaps from the simulator, described below in Section 6.1. Other
functions were created in addition to these, but these are the most integral ones to understanding
how this experiment is run. In the context of this paper, these heatmaps will be displaying primarily
the frequency of the number of unchokes, because the major focus of this paper is the quantity
of collaboration occurring between peers, as inspired by the Khan paper mentioned in Section 3;
however, the number of blocks exchanged may also be featured in the heatmaps when of relevance
in the context of this paper.

4

6.1 Implementation

There are two original functions integral to creating the heatmaps necessary for this paper. They
are the following:

• convertDictList(frequenciesDict) Featured in util.py, this function, given a dictionary
where the keys are touples where the first element of the touple is the uploading agent and the
second element of the touple is the downloading agent, and where the values are the frequency
of the given exchange, will convert it into a list of lists where each of the lists contains the
first element of the touple, the second element of the touple, and the corresponding frequency.

• frequencyMap(frequenciesList, bandwidths) This takes a list of lists containing the
following elements in this exact order: the uploading agent, the downloading agent, and the
corresponding frequency. It then uses matplotlib in order to create a heatmap using ishow,
representing those frequencies visually using a heatmap where darker squares represent a
higher number of exchanges, with a corresponding frequency bar. Note that because a peer
cannot upload and download from itself, there will be a white line along the z-axis of the
heatmap.

A significant question regarding the approach of this experiment is manner of distribution of
bandwidth: should it be uniformly distributed, or equally distributed? Because it is specifically the
algorithm type that is being tested, all of the non-Seed peers will be given the same bandwidth:
that bandwidth being calculated by finding the middle point between the minimum and maximum
bandwidth assigned. The Seeds will all be assigned the maximum bandwidths.

Regarding BitTorrent, as described in detail in Section 4.1, at round i, chokes were implemented
specifically for peers that did not upload to them during around i − 1, in contrast to the 6 most
recent rounds, in attempt at get as close to the standard definition of tit-for-tat as possible in the
context of P2P networks. Furthermore, a maximum of 4 unchoke slots are allowed for any one
given BitTorrent, given that this is the standard.

In the original FairTorrent paper, the authors had created an implementation focused on bytes,
blocks, and pieces making up whole files: in the context of our simulator, there are only blocks
and pieces. To translate the FairTorrent algorithm to the simulator, as many blocks as possible
of a given piece will be uploaded when that piece is requested of the FairTorrent and that Upload
object is chosen. The major parameters fed into the simulator are the following:

1. numPieces: The number of pieces in the file to be downloaded.

2. blocksPerPiece: The number of blocks needed to be downloaded to finish a whole piece.

3. minBw: The minimum number of blocks possible for an agent to send to another agent in a
single round.

4. maxBw: The maximum number of blocks possible for an agent to send to another agent in a
single round.

5. iters: The number of iterations for the simulation to be run.

6. maxRound: The maximum number of rounds for the simulation to enact before moving on to
the following iteration.

5

7. Agent, count: The type of agent (with its corresponding algorithm) and the number of such
an agent. This can take multiple different agents and different counts.

Given that different quantities of competing peers yields different results, with higher agent
counts yielding greater competition between peers, this should be held constant: the aim of the
non-Seed peer count is between 9 and 10. In order to prevent our iterations for continuing for
an excessive number of rounds, two Seeds will be included in each environment. All of the above
listed parameters, including the sum of the number of agents will be held constant via the following
input:

python3 sim.py --numPieces=128 --blocksPerPiece=16 --minBw=16 --maxBw=32

--maxRound=1000 --iters=32 Seed,2

6.2 Results

BitTorrent,9 Freerider,1 As pictured in Figure 3, BitTorrent is robust against Freeriders–
positioned against 9 BitTorrents, the Freerider finished its download process last, ending at round
59.1 on average.

Name Avg. Completion Rounds Std. Deviation

BitTorrent2 51.5 6.0

BitTorrent0 51.7 5.5

BitTorrent4 51.9 4.8

BitTorrent5 52.1 5.2

BitTorrent7 52.3 5.2

BitTorrent3 52.6 6.1

BitTorrent1 52.7 5.5

BitTorrent6 52.8 6.2

BitTorrent8 53.3 6.2

Freerider0 60.0 3.5

Figure 3: Completion Rounds for BitTorrent,9 Freerider,1

In Figure 4, a visual is provided to highlight the mutual transactions that occur between the
BitTorrent, as seen by the darker blocks between them. The entirety of the Freerider row is white,
due to its lack of uploading to any other peer; however, due to BitTorrent’s optimistic unchokes, the
Freerider does end up downloading from the BitTorrents as pictured by the grey squares pictured
in the Freerider column, but not as often as the other BitTorrents end up downloading from their
fellow BitTorrents, as seen by their darker shade. This difference highlights Freerider’s dependence
on the Seed, which is heavily constrained by its randomized approach and limited bandwidth.

FairTorrent,9 Freerider,1 Figure 5 reveals similar results to those from the environment only
featuring BitTorrent and Freerider, showing a strength of the tit-for-tat strategy. However, because
of FairTorrent’s more generous approach, the average completion rounds are substantially lower
than that of the results between BitTorrent and Freerider, given that the last average completion
round was 59.1 for BitTorrent and Freerider, and the last average completion round was 56.3 for
FairTorrent and Freerider.

6

Figure 4: Heatmap generated by BitTorrent,9 Freerider,1

Name Avg. Completion Rounds Std. Deviation

FairTorrent5 47.0 5.4

FairTorrent2 47.2 5.6

FairTorrent6 47.8 6.0

FairTorrent1 48.1 6.0

FairTorrent8 48.2 6.5

FairTorrent3 48.6 7.1

FairTorrent7 48.7 7.6

FairTorrent0 48.9 8.0

FairTorrent4 49.3 6.1

Freerider0 56.3 2.6

Figure 5: Completion Rounds for FairTorrent,9 Freerider,1

7

Maintaining that train of thought, FairTorrent’s altruism is also shown in the heatmap for the
environment, pictured in Figure 6. Because FairTorrent does always upload to at least one of the
requests that is submitted to it, it is more inclined to upload to a Freerider than BitTorrent because
of it’s unability to actively choke its peers. This is present in the darker shade present from the
FairTorrents to Freerider0 column (in comparison to the column present in the BitTorrent and
Freerider environments). Furthermore, because of this lack of active choking and the longer-term
approach to tit-for-tat, the unchokes pictured in the figure from FairTorrents to other FairTorrents
are not as even or as consistent as the spread between BitTorrents and other BitTorrents seen in
Figure 4. This is especially notable in the relationship between FairTorrent1 and FairTorrent2,
being substantially lighter than the surrounding squares.

Figure 6: Heatmap generated by FairTorrent,9 Freerider,1

FairTorrent,5 BitTorrent,5 FairTorrent’s altruism, in comparison to BitTorrent’s altruism,
which manifests as the optimistic unchokes and even division of bandwidth when it comes to
uploads as described in Section 4.1, appears to be much more efficient in regards to download
completion time, as seen in Figure 7. What is also of note is that the table reveals that the
standard deviation appears to be much greater for BitTorrent than FairTorrent, when the two are
directly put up against each other.

When taking a look at the heatmap of unchokes, featured in Figure 8, it appears that the chart
is split up into four quadrants: while the two different types of algorithms do exchange data with
each other, it appears to be a much lesser degree than with agents that possess an algorithm of the
same type. Like seen earlier, the quadrant of BitTorrents appear to be much more consistent with
collaborating with all of the agents of their type, while FairTorrents also do aggressively collaborate

8

Name Avg. Completion Rounds Std. Deviation

FairTorrent0 45.4 5.0

FairTorrent4 45.7 4.1

FairTorrent1 46.1 4.6

FairTorrent2 46.5 5.8

FairTorrent3 46.6 4.2

BitTorrent2 48.6 8.5

BitTorrent1 48.8 8.1

BitTorrent4 50.2 7.0

BitTorrent3 50.8 6.4

BitTorrent0 50.8 7.9

Figure 7: Completion Rounds for FairTorrent,5 BitTorrent,5

with each other, although they do appear to choose random favorites whom they unchoke more
often than others.

Figure 8: Heatmap generated by FairTorrent,5 BitTorrent,5

Due to this similar behavior, but Figure 7 still revealing that FairTorrent relatively consistently
beat out BitTorrent in terms of completion time, it was shown that the upload protocol itself was
notable: not only in how the peer to which to upload to was chosen, but also in the quantity of
blocks that were chosen to be uploaded. This is revealed in Figure 9; while it looks deeply similar
to Figure 8 in terms of shape, with both the top-left and bottom-right quadrant being darker than
the other two, in Figure 9, the relative darkness of the BitTorrent to BitTorrent squares is much

9

lighter than the FairTorrent to FairTorrent squares. Furthermore, it appears that FairTorrent was
indeed more generous than BitTorrent in terms of cross-protocol uploads, given that it appears
that the FairTorrent to BitTorrent quadrant appears to be on average darker than the BitTorrent
to FairTorrent.

Figure 9: Heatmap for Blocks Exchanged by FairTorrent,5 BitTorrent,5

This reveals that FairTorrent’s protocol regarding uploads allows for more focused collaboration,
supporting the theoretical premise of Sherman, Nieh, and Stein’s paper that FairTorrent is more
effective in terms of download speeds than BitTorrent due to the ability to more efficiently utilize
bandwidth space.[4] From a theoretical standpoint it appears that by uploading entire pieces
at a time when possible, FairTorrent aggressively incentivizes further cooperation with other
FairTorrents.

FairTorrent’s Approach to Collaboration Based off the preceding results, it appears that
the following theoretical analysis appears reasonable: FairTorrent’s upload process differs from that
of BitTorrent by uploading as much of a given piece as possible; if there is leftover bandwidth, then
a following piece will begin to be uploaded for another peer (as described in Section 4.2). When
a FairTorrent A is working with only other FairTorrents, this yields more mutual collaboration
by adjusting the deficit value of the peer with the highest deficit value (call this peer B); this is
through uploading entire pieces consisting of a given set of blocks (or the maximum number of
blocks given a set bandwidth– whichever is smaller), the deficit value from the perspective of peer
B regarding peer A as a result will also decrease, resulting in A moving down the deficit list for
peer B, making A more likely to be the recipient of an upload when they put in a request in a
future round.

10

7 AngwyTorrent

7.1 Rationale

Based off the results in Section 6.2, FairTorrent appears to be a more efficient method of implementing
tit-for-tat in terms of working in swarms and functioning against Freeriders. However, there is a
question regarding whether or not there is a simpler way to break the robustness of tit-for-tat.
For the final section of this paper, a strategy will be implemented that will intentionally attempt
to mirror the tit-for-tat in its opposite. This method will be theoretically touched on and then
empirically explored, and its related automata is pictured as the following:

C D

(, D) (, C)

(, D)

(, C)

Figure 10: Automata for AngwyTorrent

This protocol will be called AngwyTorrent due to its, practically speaking, irrational approach.
When a peer cooperates, the AngwyTorrent will transition to dissenting, if it isn’t already– and
when a peer dissents, the AngwyTorrent will transition to cooperating if it isn’t already. Figure 10
features an automata that is identical to that of tit-for-tat, as articulated in Section 2 of this paper,
except each of the edges has the opposite action listed: when tit-for-tat features an edge that is
(, D), then the automata for AngwyTorrent features the same edge with (, C); and when tit-for-
tat features an edge that is (, C), then the automata for AngwyTorrent features the same edge
with (, D). Both automatae start with cooperation; empirically, this due to the fact that when
the deficit values for all of the peers are the same from the perspective of a given agent, then it does
benefit to upload to anybody who requests it, because then bandwidth is more efficiently utilized,
and theoretically, it ensures that tit-for-tat will cooperate in the following round in the context of
BitTorrent and will cooperate in rounds far into the future in the context of FairTorrent.

When running both automatae, assuming that both machines start at C, then the following
progression should occur and then repeat itself once the process is completed, where the first item
in the touple is the AngwyTorrent and the second item is a tit-for-tat agent:

1. (C,C)

2. (D,C)

3. (D,D)

4. (C,D)

Figure 1 in Section 2 features a pay-off matrix for a prisoner’s dilemma, which is being used
as a method of articulating a P2P network game in the context of this paper. Given the above
possibilities, according to the pay-off matrix, assuming that either of the two players may choose

11

to dissent as a result of focusing on an alternate peer with whom to exchange, in half of these
scenarios, the AngwyTorrent will be at an advantage: in the remaining scenarios, the utility of
the two players should be even, meaning that the tit-for-tat’s strategy will only ever yield as much
utility as the AngwyTorrent’s strategy theoretically. Given this strategy, it would appear reasonable
to conclude that when implemented, AngwyTorrent would yield quicker download times than either
of the tit-for-tat strategies, given enough iterations.

Kill them with Kindness? AngwyTorrent still resembles tit-for-tat, technically: given a change
in action from the peer, AngwyTorrent retaliates accordingly. However, it punishes cooperation and
rewards dissent, and through this, exploits actual tit-for-tat strategies from a theoretical standpoint.
AngwyTorrent does not maximize the overall good of the environment by focusing on increasing the
quantity of (C,C) events, which mutual tit-for-tat strategies like BitTorrent attempt to maintain
with other agents of the same type; instead, AngwyTorrent attempts to maximize the amount
of time that AngwyTorrent has benefited more than the opposing tit-for-tat strategy, and given
that empirically, these protocols are functioning in an environment with more than two players
and a limited quantity of bandwidth, it is inevitable that the process of the two communicating
automatae by which the AngwyTorrent and tit-for-tat protocol are playing will be interrupted and
AngwyTorrent will be forced to play D even when it isn’t appropriate according to the automata.

When such a process is interrupted, either the following round will return to stage 2– that
being (D,C)– or stage 3– that being (D,D)– depending on which moment the process was in.
From there, the process may resume to the following stage depending on when the AngwyTorrent
returns to communicating with the peer, yielding greater benefit for the AngwyTorrent. Through
this reasoning, AngwyTorrent should end up often completing the download process before any
tit-for-tat strategy.

7.2 Implementation

The implementation of AngwyTorrent is identical to that of FairTorrent, with the exception of the
upload function: rather than sorting the list by the lowest deficit, AngwyTorrent sorts it by the
highest deficit, and then chooses to upload to the peers that way, traversing down the list.

7.3 Results

BitTorrent vs. AngwyTorrent Figure 11 reveals that AngwyTorrent does outperform BitTorrent.
This is corresponds with the results found in Section 6.2; FairTorrent was quicker to finish than
BitTorrent due to its upload process, which is also featured in AngwyTorrent. It also appears that
the margins by which AngwyTorrent finishes first appears to be mildly greater than the margins
by which FairTorrent beat BitTorrent. In Figure 7, the half range of the avg. completion rounds
for the entirety of the environment is calculated as the following: (50.8− 45.4)/2 = 2.7, in contrast
to the results in Figure 11, where the half range is (52.3 − 44.9)/2 = 3.7. This greater half range
for the average completion rounds between the two environment is marginal but may present an
occasional strength of AngwyTorrent against FairTorrent, which has theoretical support described
in Section 7.1.

The heatmap featured in Figure 12, similar to the relationship of FairTorrents to other FairTorrents
in Figure 8, the pairs which feature higher quantities of unchokes appear to be randomly assigned

12

Name Avg. Completion Rounds Std. Deviation

AngwyTorrent1 44.9 5.9

AngwyTorrent0 45.3 6.4

AngwyTorrent2 45.3 5.0

AngwyTorrent4 45.4 6.4

AngwyTorrent3 46.8 6.2

BitTorrent2 48.4 5.1

BitTorrent0 48.6 5.9

BitTorrent3 50.7 6.0

BitTorrent4 51.5 6.0

BitTorrent1 52.3 7.3

Figure 11: Completion Rounds for AngwyTorrent,5 BitTorrent,5

between pairs of AngwyTorrents. It does not appear that AngwyTorrent’s presence has not
substantially changed the degree of inter-protocol exchanges.

Figure 12: Heatmap generated by AngwyTorrent,5 BitTorrent,5

FairTorrent vs. AngwyTorrent In Figure 13, it appears that AngwyTorrent and FairTorrent
are much closer competition than AngwyTorrent and BitTorrent, fitting the theoretical explanations
regarding the strengths of AngwyTorrent; the presence of two Seeds results in a possible dependency
of both types of protocol on the Seed which may be the final dictator for the rate of completion,

13

Name Avg. Completion Rounds Std. Deviation

AngwyTorrent0 44.2 5.9

AngwyTorrent3 44.4 6.4

AngwyTorrent1 44.9 5.0

AngwyTorrent4 44.9 6.5

FairTorrent2 44.9 4.4

FairTorrent3 45.8 6.9

AngwyTorrent2 45.8 6.9

FairTorrent1 46.3 4.6

FairTorrent4 46.6 4.9

FairTorrent0 46.8 5.7

Figure 13: Completion Rounds for AngwyTorrent,5 FairTorrent,5

and due to the Seed’s random approach may result in certain anomalies. This is clearly seen in
AngwyTorrent2 being the only AngwyTorrent that did not complete its download before any of
the other FairTorrents on average, being surpassed in the figure by FairTorrent2 and FairTorrent3,
albeit by very slim margins.

Furthermore, in Figure 14, there is a similar kind of randomness present in the AngwyTorrent
to AngwyTorrent quadrant as there is in the the FairTorrent to FairTorrent quadrant. The
two other quadrants appear to be relatively lighter than the cross-protocol quadrants present in
the other figures in Section 6.2 as well as Figure 12 specifically, revealing that AngwyTorrent’s
protocol stratifies the connections between itself and FairTorrent more than AngwyTorrent does
with BitTorrent.

8 Conclusion

It appears that AngwyTorrent playing directly against tit-for-tat does indeed typically yield more
efficient download times for AngwyTorrent, given that they are in a context where all of the players
feature some sort of tit-for-tat strategy. In contrast to BitTorrent and FairTorrent, however,
under no conditions would AngwyTorrent be able to prevent the success of Freeriders, given
that Freeriders never upload, meaning that Freeriders will always have the highest deficit and
will always recieve downloads from AngwyTorrent first. However, it’s possible that by removing
the Freerider from the environment as quickly as possible, it will allow the remaining nodes to
finish their download processes more quickly, instead of forcing the Freerider to depend purely
on the Seed for its downloads. This could theoretically yield a lower half-range for the average
completion time for the given environment, potentially warranting future study. Another area
of future work revolves around much more specifically quantifying the quantity of inter-protocol
exchanges/unchokes and the quantity of intra-protocol exchanges/unchokes. While the heatmaps
were helpful in visualizing the data, by quantifying these values, the results and analysis regarding
these sorts of communications will be much more concrete and replaceable.

A strength of FairTorrent established is its ability to upload entire pieces at a time: the
bandwidths assigned to each of the peers in this experiment was 24, while each pieces was made
up of 16 blocks. This allowed for FairTorrent to send a whole piece of the file during every round

14

Figure 14: Heatmap generated by AngwyTorrent,5 FairTorrent,5

and was a notable strength of it– an aspect worth exploring as a result is the outcome of having
pieces that are greater in size than the bandwidth assigned. This may decrease the significance
of FairTorrent’s strength as a protocol and may result in the distribution between unchokes to be
different. Another thing worth exploring is running the same experiments with only a single Seed,
rather than two. This may result in the Seed being less of a randomized crutch for the nodes such
that the power of the AngwyTorrent is highlighted.

15

References

[1] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Economics of
PeertoPeer systems, volume 6, 2003.

[2] Umair Waheed Khan and Umar Saif. Bittorrent for the less privileged. In Proceedings of
the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, New York, NY, USA, 2011.
Association for Computing Machinery.

[3] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy, and Arun
Venkataramani. Do incentives build robustness in bittorrent. In Proc. of NSDI, volume 7,
2007.

[4] Alex Sherman, Jason Nieh, and Clifford Stein. Fairtorrent: Bringing fairness to peer-to-
peer systems. In Proceedings of the 5th International Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’09, page 133–144, New York, NY, USA, 2009.
Association for Computing Machinery.

16

